GEODICT

The Digital Material Laboratory

GEODICT® WORKFLOW FOR MATERIAL DEVELOPMENT

Import and segmentation

Fiber identificatior

Pore analysis

2

1

Import a µCt scan of the composite:

- Use GeoDict image processing tools to improve the scan's quality
- Segment the scan into 3 phases (fibers, polymer, pores) via
 - Manual thresholds
 - Automatic thresholds (OTSU, k-Means)
 - Multiphase threshold via watershed algorithm
 - Al-based segmentation

Result: Digital twin of the composite

- Let FiberFind AI identify single fibers in the scan
- Evaluate fiber orientation, fiber diameters, fiber distribution, and a lot more in the composite material 3D-model
- Evaluate fiber orientation through the thickness of the material to assess process induced variations
- In this example, fibers are oriented differently within the inner layer due to the injection molding process

Result: Statistical description of fibers in composite

- Analyze the pore space with PoroDict
 - Pore size distribution
 - Pore shapes
 - Pore locations
- In this example,
 - voids are mainly located in the inner region in which the fibers are not aligned to the flow direction
 - mean diameter (diameter of volume-equivalent sphere) of 237.36 μm with a standard deviation of 97.46 μm.

Result: Extensive evaluation of pores

- Compute material properties:
 - Flow properties, such as permeability
 - Electrical and mechanical conductivity
 - Stiffness tensor
- Simulate large deformation such as tensile and bending tests
- Vary material morphology, such as pore content and pore sizes

Result: Validated model for mechanical properties

