GEODICT

The Digital Material Laboratory

GEODICT WORKFLOW FOR SIMULATIONS ON FOAMS

DIGITAL TWIN OF AN ALUMINUM FOAM

- Analysis and optimization of the pore space of open cell metallic foams is essential in development of new foams.
- 100% digital workflow using GeoDict software instead of conducting complex, time-consuming experiments.
- A CT scan imported into GeoDict is used to create a statistical digital twin of the foam.
- Fully parametrized digital twin is then used for digital parameter studies.

MATH 2 MARKET Data Acquisition

Analysis

imulation &

- Import a µCT scan of the foam
- Improve the scan's quality through GeoDict image processing tools
- Segment the scan into different phases via
 - Manual thresholds
 - Automatic thresholds (OTSU, k-Means)
 - Multiphase threshold via watershed algorithm
 - Al-based segmentation

Result: Digital twin of the foam

- Analyze the pore space with PoroDict
 - Pore size distribution
 - Shapes of pores
 - Percolation paths
- Analyze the strut thickness and solid volume fraction with MatDict
- Determine physical properties of the digital twin
 - Permeability
 - Electrical and thermal conductivity
 - Mechanical behavior

Result: Statistical description of the digital twin

- Model a statistical digital twin in FoamGeo using the Poro-Dict and MatDict results
- Design new foams by modifying parameters, such as:
 - Pore sizes and shapes
 - Anisotropy and gradients
 - Solid volume fraction
 - Strut thickness
- Model digital prototypes for parameter studies
- Compare properties of the scan and statistical digital twin of the foam

Result: Multiple digital prototypes of new foams

- Compare the newly designed digital prototypes
- Analyze the interdependency of the foam design and its properties
- Determine the properties of the digital prototypes
 - Strut thickness and pore sizes
 - Flow properties, such as permeability
 - Electrical and mechanical conductivity
 - Stiffness tensor
- Run single parameter studies, e.g. changing only the pore size, which are almost impossible to conduct in the lab

Result: Most promising digital prototype

