GEODICT

The Digital Material Laboratory

GeoDict Workflow for Composites

GENERATE MESHES OF THE DIGITAL COMPOSITE MODELS

- Microscale 3D models are generated easily with GeoDict based on parameter information collected from datasheets and micrographs. The 3D models include fibers as well as imperfections, such as voids.
- The 3D models are exported as triangulated mesh and used for simulations in all common FEA software tools
- The 3D models are easily modified to perform digital parameter studies aimed to understand the interdependence of material microstructure design and macroscale material properties, e.g. mechanical, flow, thermal, electrical, etc.

GEODICT® WORKFLOW FOR COMPOSITES

Collect information on the composite from

- Micrographs fiber volume fraction, fiber distribution, fiber diameter, void content
- Data sheets fiber volume fraction, twist, yarn density, yarn count, fiber diameter
- Other laboratory experiments, such as resin burning-off method, acid digestion of resin

Result: Description of the composite

Generate a fiber structure based on collected information, with

- Endless fibers
- Short and long fibers
- Curved or straight fibers
- Voids
- Uneven fiber distributions
- Misalignment

Result: Digital 3D model of the composite

Combine fiber microstructures to generate laminates

- Multidirectional lay-ups
- Sandwich structures with foams
- Combination of unidirectional layers, weaves, and nonwovens

Result: Digital 3D Model of the laminate

- Generate a meshed model of the composite
- Export this mesh to use for further simulations in finite element (FEA) software, such as Ansys, Abaqus, LS Dyna

Result: Meshed model of the composite

ire

Data Aquisition

Structure Generation

Stacking

2

3

1