GEODICT

The Digital Material Laboratory

GeoDict® Workflow for Composites

DEFINE YOUR OWN MATERIAL LAW BASED ON EXPERIMENTS

- Define your own material law for a polymer matrix in just a few clicks
- Simulate plastic deformation on microscale
- Compare different materials virtually without the need of manufacturing prototypes
- Combine your material law with different fiber types in a few hours on your PC instead of spending days in the lab

MATH 2 MARKET

GEODICT® WORKFLOW FOR COMPOSITES

Generation **Stress in z-direction in MPa**250
200
150
50
0 0.12 in polyme 0.08 Simulation 0.00 blastic strain ii Strain in z-direction Stress in load direction --- Plastic deformation in polyr 250 Stress in z-direction in 200 Parametei **┷**-20 °C **←**23 °C 100 **-**-60 °C 50 -80 °C Strain in z-direction

- Import 3D image data, e. g. µCT scans to obtain material model
- Analyze material model with FiberFind to get statistical information, such as:
 - Fiber orientation
 - Fiber diameter distribution
 - Fiber length distribution

Result: Material model and statistical information

- Generate your own material model with FiberGeo or WeaveGeo – our generators for fiber structures and weaves
- Design your material model from scratch or use statistical data from previous analysis
- Vary your material model to do parameter studies

Result: Material model

- Import stress-strain-curves of matrix polymer from
- Use GeoDict's reverse engineering function to find plastic material law of experimental data

Result: Customized material law

- Predict stiffness tensor of your composite and simulate deformation of your composite
- Investigate local strains and stresses
- Investigate either elastic strain, plastic strain or both
- Plot stress-strain curves

Result: Mechanical behavior of your composite

- Modify fiber structure, e. g. change fiber volume fraction
- Vary material laws, such as:
 - Define material laws for different conditions (moisture uptake, crystallization)
 - Define material laws for different operating temperatures
- Replace materials, e. g. switch from glass to carbon fibers

Result: Most promising designs of your composite

SN-191101

